2016年9月27日火曜日

超音波実験 Ultrasonic experiment <超音波システム研究所 ultrasonic-labo>





超音波システム研究所は、
超音波のダイナミック特性を解析・評価する技術により
超音波シャワー、超音波液循環・・・実績に基づいた、
新しい「論理モデル」を開発しました。

超音波テスターを利用したこれまでの
計測・解析方法を、
複数の超音波プローブの測定データに発展させたことで、
超音波の非線形現象に対する、各種の影響・効果について
具体的な検討が、できるようになりました。

解析データと解析時間が、大きくなる欠点はありますが
超音波の非線形現象に関連した事項に関して、
非常に優れた検出効果があります。

超音波テスターを利用されている関係者のデータについて
相談・対応する中で
有効性を多数確認した結果(注)
新しい「論理モデル」として作成しました。

詳細は、コンサルティング対応します。

注:
 非線形効果、加速度効果、定在波の効果
 相互作用、応答特性、・・

特に、
 新しい洗浄機の洗浄効果が小さい事例、
 音圧レベルが高くても洗浄効果の小さい事例、
 同じ材質で・同じ形状でも、洗浄効果が異なる事例、
 朝から昼にかけての洗浄効果の変化の事例、
 ・・・・・
 について納得のいく説明ができます。

<ポンプ利用(脱気と曝気)による超音波の非線形制御技術について>

高周波を利用して低周波が発生する
 超音波洗浄における新しい方法のヒントとして
 <衝撃波>を考えました。

ポンプ利用(脱気と曝気)による超音波現象を
 非線形現象による<衝撃波>としてとらえると、
 音場(洗浄物・音響流・放射体・気泡)の条件に
 噴流や淀みによる
 複雑な多数の周波数を同時に発生させないほうが
 効果がある場合の
 洗浄の実状を説明する
 重要な制御事象(超音波シャワーの原理)になると考えています。

<応用に関するアイデア:概要>
気泡の近傍で形成されるミクロ流を
 適切に自己組織化することで
 安定した洗浄力のある
 音響流が構成できると言うアイデアです。
 (シャノンのジャグリング定理を応用した「超音波制御」方法
  参照 http://ultrasonic-labo.com/?p=1753 )


ミクロ流の自己組織化について
 脱気・曝気・超音波・水槽表面の弾性波動・・・により
 音響流のコントロールが可能になりました。
 (超音波キャビテーションの観察・制御技術
  参照 http://ultrasonic-labo.com/?p=10013 )


具体的には
 各種対象について
 音響特性と相互作用の確認により
 目的に合わせた、音響流の設定(周波数範囲と変化・・)条件に基づいて
 詳細な確認調整を行います。


曝気による気泡の大きさは
 超音波によるマイクロバブルの発生量とも関連するため
 単純な傾向はありませんが
 最も重要なパラメータです。
 (音色と超音波 参照 http://ultrasonic-labo.com/?p=1082


コンサルティング対応として
以下の技術を適切に設定することで
上記の技術を実現します。
 1)ジャグリング定理を応用した「超音波制御」技術
 2)音色と超音波・音と超音波の組み合わせ制御技術
 3)「脱気・マイクロバブル発生装置」の利用技術
 4)超音波洗浄機の<計測・解析・評価>技術



0 件のコメント:

コメントを投稿