*複数の異なる周波数の振動子の「同時照射」技術
*代数モデルを利用した「定在波のシュミレーション」技術
*振動子の固定方法による「定在波の制御」技術
*時系列データのフィードバック解析による「超音波測定・解析」技術
*液循環に関する「ダイナミックシステム」の統計処理技術
上記の技術を組み合わせることで
超音波による新しい分散制御技術を開発しました。
今回開発した技術の応用事例として、
複数の異なる、形状・サイズ・硬度・音響特性・・・の
組み合わせによる分散対象を効率良く分散させることが可能になりました。
特に、
超音波の発振周波数に対する、
対象物への伝搬周波数(キャビテーションと音響流の効果)を
明確に制御できるようになりました。
複数の超音波振動子を利用する場合は
発振の順序、出力変化の方法、水槽内の液面の振動・・に関する
各種(時間の経過による特性の変化・・)の問題に、
<相互作用の影響>をグラフとして、把握することが重要です。
その結果
40kHzの超音波振動子を使用した
200-300kHzの超音波による
キャビテーションや音響流の効果を利用できます。
超音波・洗浄・改質・攪拌・・・様々な実績につながっています。
*代数モデルを利用した「定在波のシュミレーション」技術
*振動子の固定方法による「定在波の制御」技術
*時系列データのフィードバック解析による「超音波測定・解析」技術
*液循環に関する「ダイナミックシステム」の統計処理技術
上記の技術を組み合わせることで
超音波による新しい分散制御技術を開発しました。
今回開発した技術の応用事例として、
複数の異なる、形状・サイズ・硬度・音響特性・・・の
組み合わせによる分散対象を効率良く分散させることが可能になりました。
特に、
超音波の発振周波数に対する、
対象物への伝搬周波数(キャビテーションと音響流の効果)を
明確に制御できるようになりました。
複数の超音波振動子を利用する場合は
発振の順序、出力変化の方法、水槽内の液面の振動・・に関する
各種(時間の経過による特性の変化・・)の問題に、
<相互作用の影響>をグラフとして、把握することが重要です。
その結果
40kHzの超音波振動子を使用した
200-300kHzの超音波による
キャビテーションや音響流の効果を利用できます。
超音波・洗浄・改質・攪拌・・・様々な実績につながっています。
0 件のコメント:
コメントを投稿