2017年1月29日日曜日
2017年1月26日木曜日
2017年1月25日水曜日
2017年1月24日火曜日
脱気・マイクロバブル発生液循環 (超音波技術) Degassed microbubble generating circulation
目的に合わせた効果的な超音波制御を実現するために、
<脱気・マイクロバブル発生液循環システム>を利用しています。
超音波液循環技術の説明
1)超音波専用水槽(オリジナル製造方法)を使用しています
2)水槽の設置は
1:専用部材を使用
2:固有振動と超音波周波数・出力の最適化を行っています
3)超音波振動子は専用部材を利用して設置しています
(専用部材により、定在波、キャビテーション、音響流の
利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します
(標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています
上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します
均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します
この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)
目的の超音波状態は音圧測定解析で行います
ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします
脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します
液循環により、以下の自動対応が実現しています
溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します
もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます
しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。
この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)
さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません
この濃度分布の解決がマイクロバブルの効果です
脱気・マイクロバブル発生液循環が有効な理由です
2017年1月23日月曜日
2017年1月18日水曜日
超音波(発振制御)プローブ (超音波システム研究所 ultrasonic-labo)
超音波システム研究所は、
オリジナル製品:超音波テスターの利用実績から
部品検査、精密洗浄・・・に関して、
超音波の伝搬状態に関する
音響特性を考慮した
超音波プローブの製造技術を開発しました。
超音波プローブ開発に関する新しい技術です。
測定・発振・制御に合わせた、
超音波(の伝搬状態)が利用できます。
特に、発振・受信の組み合わせによる
応答特性を利用した
部品検査や小さい部品の精密洗浄に関して、
超音波振動の新しい利用実績が増えています。
概略仕様
測定範囲 0.01Hz~20MHz
発振範囲 1kHz~5MHz
コード長さ 30cm~
小型ポンプを利用した「流水式超音波制御技術」 Ultrasonic experiment
ポンプ利用(脱気と曝気)による超音波の非線形制御技術
超音波システム研究所は、
目的に合わせた効果的な超音波のダイナミック制御を実現する、
<脱気・マイクロバブル発生液循環システム>に関して
空気(気体)をバブリングすることで
超音波の非線形現象をコントロールする技術を開発しました。
超音波液循環技術の説明
1)超音波専用水槽(オリジナル製造方法)を使用しています。
2)水槽の設置は
1:専用部材を使用
2:固有振動と超音波周波数・出力の最適化を行っています。
3)超音波振動子は専用部材を利用して設置しています
(専用部材により、定在波、キャビテーション、音響流の
利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します。
(標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています。
上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します。
均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します。
この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)
目的の超音波状態確認は音圧測定解析(超音波テスター)で行います。
ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。
脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。
液循環により、以下の自動対応が実現しています。
溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。
もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。
しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。
この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)
さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。
この濃度分布の解決がマイクロバブルの効果です。
脱気・マイクロバブル発生液循環が有効な理由です。
注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。
上記の液循環状態に対して
ポンプから空気(気体)をバブリングすることで
水槽底面の表面弾性波の効果を利用して
マイクロバブルの発生効率が高くなるとともに
ダイナミックな超音波の変化を実現します。
気体の流量・流速分布・・・を適切に設定することで
目的に合わせた、非線形現象を発生させることができます。
この動画は
超音波のダイナミック制御を実現させています
<脱気・マイクロバブル発生液循環システム>に関して
空気(気体)をバブリングすることで
超音波の非線形現象をコントロールする技術を開発しました。
超音波液循環技術の説明
1)超音波専用水槽(オリジナル製造方法)を使用しています。
2)水槽の設置は
1:専用部材を使用
2:固有振動と超音波周波数・出力の最適化を行っています。
3)超音波振動子は専用部材を利用して設置しています
(専用部材により、定在波、キャビテーション、音響流の
利用状態を制限できます)
4)脱気・マイクロバブル発生装置を使用します。
(標準的な、溶存酸素濃度は5-6mg/l)
5)水槽と超音波振動子は表面改質を行っています。
上記の設定とマイクロバブルの拡散性により
均一な洗浄液の状態が実現します。
均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します。
この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです)
目的の超音波状態確認は音圧測定解析(超音波テスター)で行います。
ポイントは
適切な超音波(周波数・出力)と液循環のバランスです
液循環の適切な流量・流速と超音波キャビテーションの設定により
超音波による音響流・加速度効果の状態をコントロールします。
脱気・マイクロバブルの効果で
均一に広がる超音波の伝搬状態を利用します。
液循環により、以下の自動対応が実現しています。
溶存気体は、水槽内に分布を発生させ
レンズ効果・・・の組み合わせにより、超音波が減衰します。
もうひとつは
適切な液循環による効率の良い超音波照射時は、
大量の空気・・が水槽内に取り入れられても
大きな気泡となって、水槽の液面から出ていきます。
しかし、超音波照射を行っていない状態で
オーバーフロー・・により
液面から空気を取り込み続けると、超音波は大きく減衰します。
この空気を入れる操作は必要です
多数の研究報告・・がありますが
液循環の無い水槽で、長時間超音波照射を行い続け
溶存気体の濃度が低下すると
音圧も低下して、キャビテーションの効果も小さくなります。
(説明としては、キャビテーション核の必要性が空気を入れる理由です
液面が脱脂油や洗剤の泡・・・で覆われた場合も空気が遮断され
同様な現象になります)
さらに、
超音波照射により、脱気は行われ
溶存気体の濃度は低下して、分布が発生します
単純な液循環では、この濃度分布は解消できません。
この濃度分布の解決がマイクロバブルの効果です。
脱気・マイクロバブル発生液循環が有効な理由です。
注:
オリジナル装置(超音波測定解析システム:超音波テスター)による
音圧測定解析を行い
効果の確認を行っています。
上記の液循環状態に対して
ポンプから空気(気体)をバブリングすることで
水槽底面の表面弾性波の効果を利用して
マイクロバブルの発生効率が高くなるとともに
ダイナミックな超音波の変化を実現します。
気体の流量・流速分布・・・を適切に設定することで
目的に合わせた、非線形現象を発生させることができます。
この動画は
超音波のダイナミック制御を実現させています
2017年1月17日火曜日
オリジナル超音波プローブの「発振・制御」技術 ultrasonic-labo
超音波システム研究所は、
2種類の超音波プローブ(圧電素子)と
ファンクションジェネレータを利用して、
超音波発振制御技術による、
超音波の非線形現象をコントロールする技術を開発しました。
新しい超音波の応用技術です。
対象物の音響特性に合わせた、超音波発振制御により
共振・干渉・非線形・・・のダイナミックな変化を
目的に対して効果的な、
超音波の伝搬周波数・音圧レベル・変化・・を実現します。
変動する振動状態(モード)を利用する
ダイナミックシステムとしての
装置開発も可能です。
特に、超音波テスターを利用したこれまでの
計測・解析により
各種の関係性・応答特性(注)を検討することで
超音波の各種相互作用を解析・評価・制御する方法を開発しました。
注:パワー寄与率、インパルス応答・・・
ポイントとしては、
複雑に変化する超音波の利用状態を、
音圧や周波数だけで評価しないで
「音色」を考慮するために、
時系列データの自己回帰モデルにより解析して
評価・応用することです。
目的に応じた利用方法が可能です
例1:ナノレベル粉末の表面処理・撹拌
(金、銀、・・・)
例2:マイクロレベルの液量に対する化学反応
(洗剤、溶剤、・・・)
例3:接触部分への超音波伝搬
(部品検査、表面検査、・・・)
例4:金属加工状態への超音波伝搬
・・・・・・・・・
上記の具体的な実施は、
音楽表現でいうところの「暫時的位相変換プロセス」を
2種類の超音波プローブで実現させます
これは、幅広い解釈と組み合わせが可能だと考えられますが
現実的には、各種対象物・・・の音響特性により
効果的な範囲は非常に狭く
測定確認が重要です。
2017年1月16日月曜日
2017年1月15日日曜日
音と超音波の組み合わせを利用した超音波制御技術 ultrasonic-labo
超音波システム研究所は、
*超音波伝搬状態の測定技術(オリジナル製品:超音波テスター)
*超音波伝搬状態の解析技術(時系列データの非線形解析システム)
*超音波伝搬状態の最適化技術(振動・流れの最適化処理)
*表面弾性波の応用技術
・・・・
上記の技術を応用して
<音と超音波の組み合わせ>を利用した
超音波(非線形共振現象)の制御技術を開発・応用しています。
注:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
今回開発した技術の応用事例として、
各種部品・材料の状態(空中、水中、弾性体との接触・・)
に合わせた、超音波の効果的(洗浄・改質・攪拌・化学反応促進・・・)
な利用を実現させ、実績を増やしています。
2017年1月14日土曜日
2017年1月13日金曜日
超音波発振計測解析システム(超音波テスター Ultrasonic tester)
超音波システム研究所は、
「音の形と変化に関する数学(抽象代数)モデル」と
「超音波振動子の利用に関するコンサルティング実績」にもとづいて、
超音波振動子を利用した超音波システムの実用化方法を開発しました。
超音波に関する、各種の基礎理論・技術を利用して
応用システムを開発する場合、様々な振動現象により
目的とは異なる、状況になることがほとんどだと経験しています。
この、基礎理論と現実の振動現象を
実際の具体的な時系列データ(解析)を通して
ダイナミックな特性を最優先で対処(最適化)することで
システムの改善が効率的に行える方法を
経験を通して開発してきました。
今回、この技術を、
超音波を利用する様々な関係者の方に
広く普及させたいと考え
コンサルティング、セミナー・・・により
公開・説明していくことにしました。
これまでの超音波関連技術に加え
超音波の変化を、抽象代数の圏論やコホモロジーの
スペクトルシーケンスに適応させるといった
オリジナル方法を利用して表現するために
論理的な説明はできませんが、
各種の具体的な相談に対して
具体的な技術をアドバイス・コンサルティングします。
これは、超音波システム研究所の「超音波テスター」による、
音圧測定解析の有効性を示す典型的な事項だと考えています。
「音の形と変化に関する数学(抽象代数)モデル」と
「超音波振動子の利用に関するコンサルティング実績」にもとづいて、
超音波振動子を利用した超音波システムの実用化方法を開発しました。
超音波に関する、各種の基礎理論・技術を利用して
応用システムを開発する場合、様々な振動現象により
目的とは異なる、状況になることがほとんどだと経験しています。
この、基礎理論と現実の振動現象を
実際の具体的な時系列データ(解析)を通して
ダイナミックな特性を最優先で対処(最適化)することで
システムの改善が効率的に行える方法を
経験を通して開発してきました。
今回、この技術を、
超音波を利用する様々な関係者の方に
広く普及させたいと考え
コンサルティング、セミナー・・・により
公開・説明していくことにしました。
これまでの超音波関連技術に加え
超音波の変化を、抽象代数の圏論やコホモロジーの
スペクトルシーケンスに適応させるといった
オリジナル方法を利用して表現するために
論理的な説明はできませんが、
各種の具体的な相談に対して
具体的な技術をアドバイス・コンサルティングします。
これは、超音波システム研究所の「超音波テスター」による、
音圧測定解析の有効性を示す典型的な事項だと考えています。
2017年1月12日木曜日
超音波実験 Ultrasonic experiment
--超音波の非線形現象を制御する技術による
ナノレベルの攪拌・乳化・分散・粉砕技術--
超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用した
効果的な攪拌(乳化・分散・粉砕)技術を開発しました。
この技術は
表面検査によるガラス容器の特徴(解析結果)を利用(評価)して
超音波の伝搬状態(キャビテーション・音響流)を制御します。
さらに、
具体的な対象物の構造・材質・音響特性に合わせ、
効果的な超音波(キャビテーション・音響流)伝搬状態を、
ガラス容器との相互作用に合わせて、超音波出力制御により実現します。
特に、
音響流による、高調波の刺激により
ナノレベルの対応が実現しています
金属粉末をナノサイズに分散する事例から応用発展させました。
超音波に対する
定在波やキャビテーションの制御技術をはじめ
間接容器に対する伝播制御技術・・・により
適切なキャビテーションと音響流による攪拌を行います。
これまでは、各種溶剤の効果と超音波の効果が
トレードオフの関係にあることが多かったのですが
この技術により
溶剤と超音波の効果を
適切な相互作用により相乗効果を含めて
大変効率的に利用(超音波制御)可能になりました。
オリジナルの超音波伝搬状態の測定・解析技術により、
音響流の評価・・・・多数のノウハウ・・・を確認しています。
音圧データの解析 (超音波システム研究所 ultrasonic-labo)
超音波システム研究所は、
超音波利用に関して、
<統計的な考え方>を利用した
効果的な「測定・解析・評価方法」に関する技術を開発しています。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
超音波の研究について
「キャビテーションの効果を安定させるには統計的な見方が不可欠」
<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。
正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。
<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )
1)先入観や経験は正しくないことがあると考える必要があります
2)モデルの本質を考えるためには、
圏論(注)を利用することが有効だと考えています
(実際に応用化学や量子論などで積極的に利用されています)
注:圏論は、数学的構造とその間の関係を抽象的に扱う数学理論
<論理モデルの作成について>
(情報量基準を利用して)
1)各種の基礎技術(注)に基づいて、対象に関する、
D1=客観的知識(学術的論理に裏付けられた理論)
D2=経験的知識(これまでの結果)
D3=観測データ(現実の状態)
からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
その組織的利用から複数のモデル案を作成する
2)統計的思考法を、
情報データ群(DS)の構成と、
それに基づくモデルの提案と検証の繰り返し
によって情報獲得を実現する思考法と捉える
3) AIC の利用により、
様々なモデルの比較を行い、最適なモデルを決定する
4) 作成したモデルに基づいて
超音波装置・システムを構築する
5) 時間と効率を考え、
以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
装置やシステムの具体的打ち合わせに入る
上記の参考資料
1)ダイナミックシステムの統計的解析と制御
:赤池弘次/共著 中川東一郎/共著:サイエンス社
2)生体のゆらぎとリズム コンピュータ解析入門
:和田孝雄/著:講談社
2017年1月11日水曜日
2017年1月10日火曜日
2017年1月9日月曜日
2017年1月8日日曜日
小型超音波振動子によるメガヘルツの超音波制御技術 (超音波システム研究所 ultrasonic-labo)
超音波システム研究所は、
小型超音波振動子(40kHz 50W)に関して、
超音波<制御>技術を応用した、
1-15MHzの
超音波伝搬状態を利用可能にする 超音波技術を開発しました。
小型超音波振動子の音響特性を
樹脂材料の取り付けにより調整することで
メガヘルツの超音波制御・・・を可能にした新しい技術です。
表面弾性波の利用により、
超音波の伝搬状態が複雑になりますが、
洗浄・加工・攪拌・・・対象物は、
水槽よりも大きなサイズでも対応可能です。
弾性波動に関する工学的(実験・技術)な視点と
流れや変化を取り入れた、新しい超音波モデルにより
応用技術(注)として開発しました。
注:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
様々な分野への利用が可能になると考えています
各種コンサルティングにおいて提案対応しています。
コメント
超音波現象は大変複雑です
解明されていない多数の事項があります、技術としての利用においては
大局的な把握が必要です
簡易的な実験により
具体的な各種の事項を、実感しながら、超音波をとらえることを推奨します
各種の文献・・には書かれていない、具体的な事項に直接対処することで
超音波現象の本質に関係するオリジナル技術を発展させることが可能になります
特に、樹脂の材質、構造による超音波の音響特性は
ほとんど研究されていないため
一般論で考えがちですが、具体的な各種の容器・治工具・・には
表面弾性波や振動のダイナミック特性について、固有の特徴があります
(適切な利用は新しい可能性を広げています)
2017年1月5日木曜日
オリジナル超音波実験:実験動画の公開
超音波システム研究所(所在地:東京都八王子市)は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」を製造販売しています。
システム概要(推奨システム::超音波テスターNA)
1.価格 194,400円(税込:消費税8%)
2.内容
超音波洗浄機の音圧測定専用プローブ 1本
超音波測定汎用プローブ 1本
オシロスコープセット 1式
解析ソフト・説明書・各種インストールセット 1式(USBメモリー)
3.特徴(標準的な仕様の場合)
*測定(解析)周波数の範囲
仕様 0.1Hz から 10MHz
*超音波発振
仕様 1Hz から 100kHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる測定システムです。
超音波プローブを対象物に取り付けて発振・測定を行います。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響性能として検出します。
<樹脂・プラスチック>を利用した超音波技術
超音波システム研究所は、
*超音波伝搬状態の測定技術(オリジナル製品:超音波テスター)
*超音波伝搬状態の解析技術(時系列データの非線形解析システム)
*超音波伝搬状態の最適化技術(振動・流れの最適化処理)
*表面弾性波の応用技術
・・・・
上記の技術を応用して
<音と超音波の組み合わせ>を利用した
超音波(非線形共振現象)の制御技術を開発・応用しています。
注:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
超音波(発振制御)プローブ (超音波システム研究所 ultrasonic-labo)
超音波システム研究所は、
オリジナル製品:超音波テスターの利用実績から
部品検査、精密洗浄・・・に関して、
超音波の伝搬状態に関する
音響特性を考慮した
超音波プローブの製造技術を開発しました。
超音波プローブ開発に関する新しい技術です。
測定・発振・制御に合わせた、
超音波(の伝搬状態)が利用できます。
特に、発振・受信の組み合わせによる
応答特性を利用した
部品検査や小さい部品の精密洗浄に関して、
超音波振動の新しい利用実績が増えています。
概略仕様
測定範囲 0.01Hz~20MHz
発振範囲 1kHz~5MHz
コード長さ 30cm~
超音波とマイクロバブルによる表面改質(応力緩和)技術 (超音波システム研究所 ultrasonic-labo)
超音波システム研究所(所在地:東京都八王子市)は、
超音波とマイクロバブルによる表面付近の残留応力を緩和する技術を
超音波振動子に適応させる方法を開発(公開)しました。
超音波とマイクロバブルによる、残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うことが
超音波振動子の表面の均一化と超音波発振の効率化につながることで
超音波の使用状況が大きく変わることを経験してきました。
特に、洗剤や溶剤を利用した超音波洗浄においては
超音波が対象物の音響特性に合わせて
条件設定により、効果的な反射・屈折・透過を起こすことで
目的に合わせた超音波制御が実現しました。
この技術を
コンサルティング対応として提供します
これは、新しい超音波による表面処理技術であり、
音響特性による一般的な効果を含め
新素材の開発、攪拌、分散、洗浄、化学反応実験・・・
に大きな特徴的な固有の操作技術として、
利用・発展できると考えています。
超音波とマイクロバブルを利用した
表面処理(応力緩和)技術をコンサルティング対応として
以下の事項を提供します
1:原理の説明
2:具体的な装置の説明(必要であれば設計・製造)
3:操作方法・作業ノウハウの説明
4:新しい超音波利用技術の説明
実績・事例
1:超音波水槽の表面改質
2:超音波振動子の表面改質
3:金属部品の表面改質
板金部品、ネジやボルト、・・・
4:樹脂部品の表面改質
レンズ、コーティング・塗装部品、・・
オリジナル超音波実験写真・スライドショー Ultrasonic experiment
超音波システム研究所(所在地:東京都八王子市)は、
音圧測定装置:超音波テスターを利用した実験を公開しています。
音圧測定装置:超音波テスターの特徴(標準的な仕様の場合)
*測定(解析)周波数の範囲
仕様 0.1Hz から 10MHz
*超音波発振
仕様 1Hz から 100kHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる測定・解析システムです。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響特性として検出します。
目的に合わせた特殊超音波プローブを開発・製造対応します
超音波<発振制御>実験 (超音波システム研究所 ultrasonic-labo)
超音波システム研究所は、
オリジナル製品:音圧測定解析システム(超音波テスター)による、
超音波(音圧・振動)のダイナミック特性の測定・解析を応用した、
対象物への超音波伝搬状態を発振制御する技術を開発しました。
具体的な方法については、コンサルティング対応を行っています。
新しい超音波発振制御技術です。
発振・測定・解析・制御に基づいて、
超音波の伝搬状態をコントロールします。
特に、発振・受信・解析評価により
応答特性を考慮した、非線形現象を有効に利用することで、
部品の表面状態・結合状態・・検査や精密洗浄に関して、
超音波振動の新しい利用が可能になる発振制御技術です。
液体と弾性体に伝搬する超音波のダイナミック特性を
測定・解析・確認することで
超音波の伝搬特性を、
発振波形や複数の異なる超音波の発振制御でコントロールします。
登録:
投稿 (Atom)